(10 Marks)

Fourth Semester B.E. Degree Examination, December 2012

Signals and Systems

Time: 3 hrs. Max. Marks: 100

> Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2. Make valid assumptions for any missing data.

- $\underline{PART A}$ Write the formal definition of a signal and a system. With suitable examples, state the 1 important differences between:
 - i) Continuous and discrete sinusoid ii) Even and odd symmetry waveforms (10 Marks)
 - Illustrate how the stability of an LTI system can be computed in time domain. (02 Marks)
 - The impulse response of an LTI system may be represented by

$$h[n] = \begin{cases} a^n & n \ge 0 \\ b^n & n < 0 \end{cases}.$$

Determine the range of values of a and b so that the given system is stable. (08 Marks)

- a. State and prove the following properties of convolution sum: 2
 - iii) Distributive property ii) Associative property i) Commutative property
 - b. Find the convolution of two infinite duration sequences $x[n] = \alpha^n u[n]$, $h[n] = \beta^n u[n]$ when (10 Marks) i) $\alpha > \beta$, ii) $\alpha = \beta$, iii) $\alpha < \beta$.
- Determine the total response y[n], $n \ge 0$ of a system described by the following difference 3 equation using time domain method:

$$y[n] - 3y[n-1] - 4y[n-2] = x[n] + 2x[n-1]$$

Assume $x[n] = 4^n u[n]$ and zero initial conditions.

b. Obtain direct Form - II representation for the following differential equation representation

$$2\frac{d^{3}}{dt^{3}}y(t) + 4\frac{d}{dt}y(t) + 6y(t) = 2x(t) + 6\frac{d}{dt}x(t)$$
 (05 Marks)

c. Obtain the difference equation representation for the following realized system shown in (05 Marks) Fig.Q3(c).

- Evaluate the discrete time Fourier series (DTFS) representation of x[n] and plot magnitude and phase spectrum when $x[n] = \cos\left(\frac{6\pi}{17}n + \frac{\pi}{3}\right)$. (06 Marks)
 - Determine the time domain signal x[n] when its discrete time Fourier coefficient specified as

$$X[K] = \cos\left(\frac{10\pi}{19}K\right) + j 2\sin\left(\frac{4\pi}{19}K\right)$$
 (06 Marks)

Determine the complex exponential Fourier series representation for the following continuous time signal x(t) where $x(t) = \cos 4t + \sin 6t$. Plot its spectrum. (08 Marks)

PART - B

- a. Find the discrete time Fourier transformation of the time domain sequence $x[n] = \alpha^n u[n]$ and 5 plot the magnitude and phase spectrum for the values of α (i) $\alpha = 0.5$, (ii) $\alpha = 0.9$. (08 Marks)
 - The DTFT of a time domain sequence is defined as

$$X(e^{j\Omega}) = \begin{cases} 1 & |\Omega| < W \\ 0 & W \le |\Omega| < \pi \end{cases}$$

Find its IDTFT and plot x[n].

- c. For a moving average spectrum is described by $y[n] = \frac{1}{2}[x[n] + x[n-1]]$. Find its frequency response $H(e^{j\Omega})$ and plot amplitude and spectrum. (06 Marks)
- a. The input to a discrete time system is given by $x[n] = \cos\left(\frac{\pi}{8}n\right) + \sin\left(\frac{3\pi}{4}n\right)$. Use the DTFT to 6 find the output of the system y[n], if the impulse response is given by

i)
$$h[n] = \frac{\sin(\pi/4 n)}{\pi n}$$

i)
$$h[n] = \frac{\sin(\sqrt[n]{4}n)}{\pi n}$$
 ii) $h[n] = (-1)^n \frac{\sin(\sqrt[n]{2}n)}{\pi n}$

(10 Marks)

- b. Consider the continuous time domain analog signal given by $x(t) = 3 \cos 100 \pi t$.
 - Determine the minimum sampling rate required to avoid aliasing.
 - Suppose the signal is sampled at $F_s = 200$ Hz, find the corresponding discrete time
 - Suppose the signal is sampled at $F_s = 75$ Hz, find the corresponding discrete time iii)
 - What is the frequency $0 < F < \frac{F_s}{2}$ of a sinusoid that yields samples identical to those obtained in part (iii)? (10 Marks)
- Define z-transformation and its inverse. State the important condition for the existence of the z transformation using ROC. (05 Marks)
 - Explain how the ROC in the z domain can change if the corresponding time domain sequences can be left sided, right sided and two sided, while the length can be of finite or infinite duration. (05 Marks)
 - c. Give that $x[n] = \begin{cases} a^n & \text{for } 0 \le n \le N-1 \\ 0 & \text{otherwise} \end{cases}$. Let a = 0.5, N = 8. Find $z\{x[n]\}$ using:
 - i) Direct evaluation of finite sum of X [z], ii) Sample shifting property of X [z]. Plot its poles and zeros, ROC, and comment on stability. (10 Marks)
- a. A causal LTI system is characterized by having input sequence $x[n] = \left(-\frac{1}{3}\right)^n u[n]$ and 8

output sequence $y[n] = 3(-1)^n u[n] + \left(\frac{1}{3}\right)^n u[n]$. Determine its transfer function impulse

response and difference equation representation.

(10 Marks)

- Solve the following difference equation using unilateral z transforms and find time domain solution:
 - i) $y[n+2]-3y[n+1]+2y[n]=4^nu[n]$ for y[0]=0, y[1]=1.
 - ii) $y[n] + y[n-2] = \delta[n]$ zero initial conditions.

(10 Marks)